Coverage for detection / tr / tr_detection.py: 96.00%
25 statements
« prev ^ index » next coverage.py v7.13.0, created at 2025-12-22 11:32 +0000
« prev ^ index » next coverage.py v7.13.0, created at 2025-12-22 11:32 +0000
1# Copyright 2025 THU-BPM MarkDiffusion.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
16import torch
17from detection.base import BaseDetector
18from scipy.stats import ncx2
20class TRDetector(BaseDetector):
22 def __init__(self,
23 watermarking_mask: torch.Tensor,
24 gt_patch: torch.Tensor,
25 threshold: float,
26 device: torch.device):
27 super().__init__(threshold, device)
28 self.watermarking_mask = watermarking_mask
29 self.gt_patch = gt_patch
31 def eval_watermark(self,
32 reversed_latents: torch.Tensor,
33 reference_latents: torch.Tensor = None,
34 detector_type: str = "l1_distance") -> float:
35 if detector_type == 'l1_distance':
36 reversed_latents_fft = torch.fft.fftshift(torch.fft.fft2(reversed_latents), dim=(-1, -2)) #[self.watermarking_mask].flatten()
37 target_patch = self.gt_patch #[self.watermarking_mask].flatten()
38 l1_distance = torch.abs(reversed_latents_fft[self.watermarking_mask] - target_patch[self.watermarking_mask]).mean().item()
39 return {
40 'is_watermarked': l1_distance < self.threshold,
41 'l1_distance': l1_distance
42 }
43 elif detector_type == 'p_value':
44 reversed_latents_fft = torch.fft.fftshift(torch.fft.fft2(reversed_latents), dim=(-1, -2))[self.watermarking_mask].flatten()
45 target_patch = self.gt_patch[self.watermarking_mask].flatten()
46 target_patch = torch.concatenate([target_patch.real, target_patch.imag])
47 reversed_latents_fft = torch.concatenate([reversed_latents_fft.real, reversed_latents_fft.imag])
48 sigma_ = reversed_latents_fft.std()
49 lambda_ = (target_patch ** 2 / sigma_ ** 2).sum().item()
50 x = (((reversed_latents_fft - target_patch) / sigma_) ** 2).sum().item()
51 p = ncx2.cdf(x=x, df=len(target_patch), nc=lambda_)
52 return {
53 'is_watermarked': bool(p < self.threshold),
54 'p_value': p
55 }
56 else:
57 raise ValueError(f"Tree Ring's watermark detector type {self.detector_type} not supported")